Magnesium mediated carbometallation of propargyl alcohols: direct routes to furans and furanones Pat Forgione, Peter D. Wilson † and Alex G. Fallis * Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario KIN 6N5, Canada Received 23 August 1999; accepted 18 October 1999 ## Abstract The addition of vinyl and aryl Grignard reagents to propargyl alcohols for the direct synthesis of furans and butenolides from a one pot reaction is described. These products arise from a putative magnesium chelate intermediate 2 upon reaction with various electrophiles. This chelate was also generated in situ from alkynyl lithium addition to aldehydes followed by magnesium exchange and Grignard addition. Thus, the complete substitution pattern for the furan ring may be controlled, as desired, through the judicious choice of substrates and reagents. © 1999 Elsevier Science Ltd. All rights reserved. Keywords: furan; furanone; butenolide; magnesium; propargyl. In the preceeding Communication we have described the direct addition of vinyl and related Grignard reagents to propargyl alcohols 1 to generate the intermediate magnesium chelate 2 (or a closely related species) followed by reaction with aldehydes for the direct synthesis of diene—diols and enediynes. We have extended these investigations and wish to report the versatile combinations which permit the direct synthesis of substituted furans (3) by a novel method as well as 2(5H)-furanones (butenolides) (4) depending upon the electrophiles selected (Scheme 1). $$R = \begin{bmatrix} R^1 & R^2MgX & \\ 0H & \\ 1 & \\ 1 & \\ 1 & \\ 0H & \\ 0 & \\ 0 & \\ 1 & \\ 0 &$$ Scheme 1. Magnesium mediated carbometallation of propargyl alcohols Furans comprise an important class of oxygen heterocycles. They have been isolated from a broad cross section of natural sources and have been employed both as key synthetic intermediates and as 0040-4039/00/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)01995-4 ^{*} Corresponding author. Tel: (613) 562-5732; fax: (613) 562-5170; e-mail: afallis@science.uottawa.ca [†] Present address: Department of Chemistry, Simon Fraser University, Burnaby, BC., V5A 1S6, Canada. synthetic targets in their own right.² Consequently, new preparative routes continue to be developed.³ However, few of these methods allow the synthesis of tetrasubstituted furans.⁴ Following the Grignard based carbometallation protocol developed previously, substituted furans 7 may be synthesized directly upon reaction of 2, derived from 5, by reaction with dimethylformamide (DMF) followed by acidification without isolation of the intermediate hemiacetal 6 (Scheme 2). Scheme 2. Route to trisubstituted furans. (a) 3.2 equiv. R^2MgCl , C_6H_{12} , $80^{\circ}C$, 19 h; (b) DMF or R^3CN , $0^{\circ}C$, 0.5 h, 22°C; (c) p-TsOH, C_6H_6 , 21°C, 30–60 min Alternatively, condensation with aryl nitriles in place of DMF allowed the direct synthesis of more highly substituted furans in which the substitution pattern at the 2-, 3-, and 4-positions may be controlled systematically. Table 1 illustrates various combinations with either DMF or benzonitrile. Unfortunately, the acidic conditions required for the elimination of water also induced decomposition and reduced yields for the more labile compounds 11, 13 and 14. These vinyl furan systems contain useful functionality for the construction of more complex skeletons via a double Diels-Alder strategy and may also be used as monomers. Table 1 Synthesis of substituted furans | Entry | Reactants
(DMF) | Furan | Entry | Reactants
(PhCN) | Furan | |-------|---|-------------|-------|---|-----------------------| | a | Ph─────CH ₂ OH
PhMgCl | Ph Ph 8 92% | е | Ph-==-CH₂OH
CH₂=CHMgCl | Ph Ph 0 12 62% | | b | Ph────CH₂OH
CH₂=CHMgCI | Ph 72% | f | TMS -== CH₂OH
PhMgCl | TMS Ph
Ph O 13 41% | | С | TMS- = CH ₂ OH
CH ₂ =CHMgCl | TMS | g | TMS- — CH ₂ OH
CH ₂ =CHMgCI | TMS Ph 0 28% | | đ | TMS———CH₂OH
PhMgCl | TMS Ph | | | | The versatility and scope of this furan synthesis was extended by the in situ generation of the intermediate chelate 2 via lithium-magnesium transmetallation. Thus, modification of the standard protocol permitted the introduction of substituents at the eventual C-5 position of the furan, to allow independent control of the substituent at the remaining position. Addition of the alkynyl lithium salt derived from 15 to an aldehyde afforded the lithium alkoxide 16 as illustrated in Scheme 3. This was followed by transmetallation with vinyl magnesium chloride and Grignard addition to form the chelate 2 which could then be reacted with either DMF or a nitrile derivative. This protocol generated a family of furans 17 in which the substitution pattern at all four positions could be predetermined. Scheme 3. Alkynyllithium route to furans. (a) n-BuLi; (b) R^1 CHO; (c) 3.2 equiv. R^2 MgCl, C_6H_{12} , 80° C, 19 h; (d) DMF or R^3 CN; (e) p-TsOH, C_6H_6 , 21° C, 30-60 min Table 2 lists various examples generated in this fashion including the 2,2'-bis-furan system 19. Current routes to related bis-furan systems are usually accompanied by a few percent of the parent furan.⁵ Thus, depending upon the substrate-reagent-reactant combination selected above, a large number of substituted furan systems may be prepared. Table 2 Synthesis of tetrasubstituted furans | Entry | Reactants
(DMF) | Furan | Entry | Reactants
(PhCN) | Furan | |-------|--|--------------|-------|---|----------------| | a | Ph-=-H
PhCHO
CH ₂ =CHMgCl | Ph Ph 18 36% | С | Ph -==- H
PhCHO
CH₂=CHMgCI | Ph O Ph 20 25% | | b | TMS-—H OCHO CH ₂ =CHMgCI | TMS 0 | đ | TMS | TMS Mo | Early examples of dialkyl butenolides derived from the condensation of species related to 2 with carbon dioxide have been reported,⁶ and other methods are available.⁷ However, in view of the challenge and medicinal interest⁸ in preparing 3,4-diaryl-2(5H)-furanones such as 3,4-diphenylbutenolide (23), this aspect has also been examined. The lactone 23 was synthesized by the magnesium mediated carbometallation of phenylpropargyl alcohol (22) with phenylmagnesium chloride to form the chelate 2 followed by exposure to carbon dioxide (52% yield). Modification of this protocol in which 22 was reacted directly with 4-thiomethylphenylmagnesium chloride and the reaction quenched with carbon dioxide afforded 24. Oxidation of 24 with m-chloroperoxybenzoic acid generated the sulphone 25 in quantitative yield. As illustrated in Scheme 4, this butenolide, the new Merck anti-inflammatory drug Vioxx[®], may be synthesized in a facile manner using this method. In summary, the magnesium mediated carbometallation protocols described above provides direct access to various oxygen heterocycles that may be employed for a variety of synthetic objectives. Although in some cases the yields are modest, this short route to multisubstituted furans and 3,4-disubstituted Scheme 4. A direct route to furanones including $Vioxx^{\otimes}$ (25). (a) 3.2 equiv. PhMgCl or 4-MeSC₆H₄MgCl, C₆H₁₂, 80°C, 19 h; (b) CO₂; (c) *m*-CPBA, 0–21°C, 99% butenolides in a controlled fashion is very useful. Thus, depending upon the substrate-reagent-reactant combination selected, a large number of compounds may be synthesized. In addition, the ease with which these compounds are prepared in one synthetic step renders this sequence attractive for the use of these building blocks for more complex targets. These investigations will be reported in due course. ## Acknowledgements We are grateful to the Natural Sciences and Engineering Research Council of Canada, the Canadian Breast Cancer Research Initiative (NCI, Canada) and the Saunders-Matthey Foundation for Breast Cancer Research for financial support of this research. P. Forgione thanks Torcan Chemical Ltd and the Government of Ontario for an OGSST Fellowship. ## References - 1. Forgione, P.; Fallis, A. G. Tetrahedron Lett. 1999, 41, 11. - For leading references, see: (a) Gilchrist, T. L. Contemp. Org. Syn. 1994, 1, 205. (b) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 615. - (a) Araadi, A.; Cacci, S.; Larock, R. C.; Marinelli, F. Tetrahedron Lett. 1993, 34, 2816. (b) Da Silva, G. V.; Pelisson, J. M. M.; Constantino, M. G. Tetrahedron Lett. 1994, 35, 7327. (c) Bures, E.; Spinazze, P. G.; Beese, G.; Hunt, I. R.; Rogers, C.; Keay, B. A. J. Org. Chem. 1997, 62, 8741. (d) Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 7132. - 4. (a) Kajikawa, S.; Noiri, Y.; Shudo, H.; Nishimo, H.; Kurosawa, K. Synthesis 1998, 1457. (b) Antonioletti, R.; Cecchini, C.; Ciani, B.; Magnanti, S. Tetrahedron Lett. 1995, 40, 4841. - 5. Jeevanandam, A.; Narkunan, K.; Cartwright, C.; Ling, Y.-C. Tetrahedron Lett. 1999, 34, 2816. - (a) Jousseaume, B.; Duboudin, J.-G. J. Organomet. Chem. 1971, 91, C1. (b) Mornet, R.; Gouin, L. Bull. Soc. Chim. Fr. 1977, 737. (c) Duboudin, J.-G.; Jousseaume, B. J. Organomet. Chem. 1979, 168, 233. - 7. For butenolides, see: (a) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (b) Ma, S.; Shi, Z. Tetrahedron Lett. 1999, 40, 2393. - 8. Talley, J. J. Exp. Opin. Ther. Patents 1997, 7, 55. - 9. General procedure for the magnesium mediated carbometallation of propargyl alcohols to furans: Phenylmagnesium chloride (3.7 mL, 1.87 M in THF, 6.7 mmol) was added to a solution of 3-phenyl-2-propyn-1-ol (0.28 g, 2.1 mmol) in cyclohexane (4.1 mL) at 22°C. The solution was refluxed for 19 h. The solution was cooled to 0°C and *N,N*-dimethylformamide (0.53 mL, 6.7 mmol) was added. The mixture was stirred for 5 min at 0°C and refluxed for 3 h. Standard workup yielded the crude lactol which was immediately dissolved in benzene and treated with a catalytic amount of *p*-toluenesulfonic acid and stirred at 22°C for 2 h. The reaction was neutralized with saturated aqueous sodium bicarbonate, extracted with ether (3×10 mL), dried, concentrated, and chromatographed (20:1 to 12:1 petroleum ether:ether) to afford 3,4-diphenylfuran (10) as a white solid (0.42 g, 91%); mp 108–110°C; ¹H NMR δ 7.00–7.06 (m, 6H), 7.17–7.20 (m, 4H), 7.26 (s, 2H); ¹³C NMR δ 126.4, 127.2, 128.7, 128.9, 132.6, 141.1; IR (NaCl) 1135, 803, 757, 696; MS (M⁺) calcd 220.0889; obsd 220.0894. Anal. calcd for C₁₆H₁₂O: C, 87.25; H, 5.49. Found: C, 87.24; H, 5.37.